Fifteen years of theory?¹ Decision Theory: New domains - new models

Eddie Dekel

June 8 2011

¹Endless thanks to Bart Lipman for years of explanations; no fault of his that I still make mistakes... Thanks also to Rani Spiegler and Ady Pauzner for insightful discussions.

Introduction	Models & domains 0000	Menus 000000000000000000000000000000000000	Conclusion 000
15 years of th	eory?		

Econometric Society Volumes 2000–2010

- 9 Mechanism design / contracts (one on communication and 1/2 on robustness)
- 4 Behavioral
- 4 IO (Bounded rationality, price discrimination, internet, organizations)
- 2 Decision theory
- 1 each: Communication, global games, networks, matching, organizations, hierarchies of beliefs, testing experts, repeated games

All, aside perhaps from networks and testing experts, continue seminal issues from years ago, albeit with important developments.

Introduction		
	Introd	uction

- A historically inaccurate history: Some old and some new models
 - Theme: A main step in DT is finding the **domain of choice that identifies** the model and the concept of interest
 - Why is identification of interest?
- Future?
 - Applications
 - New domains to identify new models

- The study of *behavior* that is not consistent with existing models
- Inspired by "data": introspection (Allais, Ellsberg), experiments, "market" data
- Different possible reactions to such data.

Intro	

Models & domains 0000 Menus Beliefs

Conclusion 000

Decision Theory

• Reactions to such data begin by proposing a model "consistent" with the data, and then:

Intro	

- Reactions to such data begin by proposing a model "consistent" with the data, and then:
 - \bullet test/"fit" it, or

uction

- Reactions to such data begin by proposing a model "consistent" with the data, and then:
 - \bullet test/"fit" it, or
 - apply it (game, specific decision problem, etc.), or

uction

- Reactions to such data begin by proposing a model "consistent" with the data, and then:
 - \bullet test/"fit" it, or
 - apply it (game, specific decision problem, etc.), or
 - $\bullet\,$ study it, in the context of "general" choice = DT

Introduction	Models & domains 0000	Menus 000000000000000000000000000000000000	Conclusion 000
Decision The	orv		

- That is, find the **right domain** in order to:
 - identify the model
 - develop comparatives (e.g., Arrow-Pratt risk aversion)
 - characterize model with elementary behavioral properties-**axioms**
 - see how to (experimentally) elicit preferences
 - explore properties (e.g., how to update beliefs)
 - study relationships to other models

Introduction	Models & domains	Menus	Beliefs	Conclusio
	0000	000000000000000000000000000000000000	000000000000	000
A remark on t	the hypocrisy of	DT		

 "As if" perspective: representation doesn't mean anything; just a tractable functional form

Introduction		
	Introd	luction

Models & domains

Menus Beliefs

Conclusion 000

A remark on the hypocrisy of DT

- "As if" perspective: representation doesn't mean anything; just a tractable functional form
- But the interpretation of the representation is important and critical in appeal of functional form

Introduction	Models & domains 0000	Menus 000000000000000000000000000000000000	Conclusion 000
Theme			

 A critical aspect in studying new model of behavior in DT: The domain on which revealed preferences [= choice behavior] identifies the model.

	Models & domains	Menus	Beliefs	Conclusion
	●000	000000000000000000	000000000000	000
Models—" Risk aversion	nistory"			

• What if Arrow - Pratt had taken a different approach?

	Models & domains	Menus	Beliefs	Conclusion
	●000	000000000000000000	000000000000	000
Models—" Risk aversion	nistory"			

- What if Arrow Pratt had taken a different approach?
 - Risk aversion is feeling butterflies / jitters
 Behavior / measurement: Sweaty palms, taking Valium,...
 But what decisions do we study?

	Models & domains	Menus	Beliefs	Conclusion
	⊙●○○	000000000000000000	000000000000	000
Risk aversion				

• Study (revealed) preferences over lotteries over outcome space *B*, i.e.,

 $\succeq \text{ over } \beta \in \Delta \left(B \right)$

- Representation: $U\left(\beta\right)=\int u\left(b
 ight)d\beta\left(b
 ight).$
- Independence axiom: facilitates testing, connections.
- *Elicitation:* What mixture between b^* and b_* is indifferent to b.
- Uniqueness
- Comparatives: Arrow-Pratt measure and SOSD not variance.

	Models & domains	Menus	Beliefs	Conclusion
	00●0	000000000000000000	000000000000	000
Risk aversion				

• Could also mean discomfort in taking risky decisions:

	Models & domains	Menus	Beliefs	Conclusion
	00●0	000000000000000000000000000000000000	000000000000	000
Risk aversion				

- Could also mean discomfort in taking risky decisions:
 - Behavior: avoid or delay risky decisions.

	Models & domains	Menus	Beliefs	Conclusion
	00●0	000000000000000000000000000000000000	000000000000	000
Risk aversion				

- Could also mean discomfort in taking risky decisions:
 - Behavior: avoid or delay risky decisions.
 - Enhance choice domain: allow for non-decision or time to decision.

	Models & domains	Menus	Beliefs	Conclusion
	00●0	000000000000000000000000000000000000	000000000000	000
Risk aversion				

- Could also mean discomfort in taking risky decisions:
 - Behavior: avoid or delay risky decisions.
 - Enhance choice domain: allow for non-decision or time to decision.
 - Example of possible future work by expanding the domain of choice

Models & domains	Menus	Beliefs	Conclusion
○○○●	000000000000000000	000000000000	000
probabilities			

• Enrich the domain: <u>Acts</u>

$$\succeq$$
 over $f \in (\Delta(B))^S$

• Representation:

$$\int U(f(s)) \, d\mu(s)$$

Elicitation: What constant lottery with utility β is indifferent to 1 in state s₁, 0 elsewhere

$$p_{1}u\left(1\right)+\left(1-p_{1}\right)u\left(0\right)=\beta$$

- *Uniqueness* of probabilities gives them meaning. (Interpretation)
- Separation of beliefs and utility. (Interpretation)
- Lotteries complicate the domain but identify representation (calibrate)

	Models & domains	Menus	Beliefs	Conclusion
	0000	●000000000000000000000000000000000000	000000000000	000
Preference for Kreps 1979	or flexibility			

• {beef, fish} \succ {beef} \succ {fish} indicates two states, one where each is preferred.

	Models & domains	Menus	Beliefs	Conclusion
	0000	●000000000000000000000000000000000000	000000000000	000
Preference Kreps 1979	e for flexibility			

- {beef, fish} \succ {beef} \succ {fish} indicates two states, one where each is preferred.
- Enrich the domain: consider menus

$$\succeq$$
 over $x \in 2^{\Delta(B)}$

Turns out to be a very useful domain!

	Models & domains	Menus	Beliefs	Conclusion
	0000	●000000000000000000000000000000000000	000000000000	000
Preference	e for flexibility			

- {beef, fish} \succ {beef} \succ {fish} indicates two states, one where each is preferred.
- Enrich the domain: consider menus

$$\succeq$$
 over $x \in 2^{\Delta(B)}$

Turns out to be a very useful domain!

• Representation:

$$V(x) = \int_{S} \max_{b \in x} u(b, s) d\mu(s)$$

Introduction Models & domains Menus Beliefs Conclusion

• {fish} \succ {beef, fish} \sim {beef} indicates concern that will choose the "wrong" item:

$$V(x) = \max_{\substack{\beta \in \arg\max_{\beta' \in x} v(\beta')}} u(\beta)$$

" = " $u\left(\arg\max_{\beta' \in x} v(\beta')\right)$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	00000000000	000
(Overwhelmin _{Strotz}	ng) Temptation			

 Implies a direct match between desire for commitment and preference reversals:

 \boldsymbol{v} chooses something different than \boldsymbol{u} iff would want to commit to the choice made by \boldsymbol{u}

Inconsistent with experiments and introspection; Kocherlakota ex.; ignores cost to resisting temptation

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
(Overwhelmir _{Strotz}	ng) Temptation			

 Implies a direct match between desire for commitment and preference reversals:

 \boldsymbol{v} chooses something different than \boldsymbol{u} iff would want to commit to the choice made by \boldsymbol{u}

Inconsistent with experiments and introspection; Kocherlakota ex.; ignores cost to resisting temptation

• Welfare: what utility function to use? Pareto?

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
(Overwhelmir _{Strotz}	ng) Temptation			

• Implies a direct match between desire for commitment and preference reversals:

 \boldsymbol{v} chooses something different than \boldsymbol{u} iff would want to commit to the choice made by \boldsymbol{u}

Inconsistent with experiments and introspection; Kocherlakota ex.; ignores cost to resisting temptation

- Welfare: what utility function to use? Pareto?
- Problems in multi-period version (Peleg-Yaari (game), Harris-Laibson (discontinuities, non-monotonicities)

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
Temptation— Gul-Pesendorfer (20	costly self contro	l		

• GP Representation:

$$V(x) = \max_{\beta \in x} (u(\beta) - c(\beta, x))$$

$$c(\beta, x) = \max_{\gamma \in x} (v(\gamma) - v(\beta))$$

$$V(x) = \max_{\beta \in x} \left(u\left(\beta\right) + v\left(\beta\right) \right) - \max_{\beta \in x} v\left(\beta\right)$$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000•000000000000000000000000000000000	000000000000	000
Temptation-c	costly self control			

• GP Representation:

$$V(x) = \max_{\beta \in x} (u(\beta) - c(\beta, x))$$

$$c(\beta, x) = \max_{\gamma \in x} (v(\gamma) - v(\beta))$$

$$V\left(x
ight) = \max_{eta\in x}\left(u\left(eta
ight)+v\left(eta
ight)
ight)-\max_{eta\in x}v\left(eta
ight)$$

• Strotz:

Gul-Pesendorfer (2001)

$$V\left(x\right) = \lim_{k \to \infty} \left[\max_{\beta \in x} \left(u\left(\beta\right) + k v\left(\beta\right) \right) - \max_{\beta \in x} \left(k v\left(\beta\right) \right) \right]$$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
Temptation-q	costly self control			

• GP Representation:

$$V(x) = \max_{\beta \in x} (u(\beta) - c(\beta, x))$$

$$c(\beta, x) = \max_{\gamma \in x} (v(\gamma) - v(\beta))$$

$$V\left(x
ight) = \max_{eta\in x}\left(u\left(eta
ight)+v\left(eta
ight)
ight)-\max_{eta\in x}v\left(eta
ight)$$

• Strotz:

Gul-Pesendorfer (2001)

$$V\left(x\right) = \lim_{k \to \infty} \left[\max_{\beta \in x} \left(u\left(\beta\right) + k v\left(\beta\right) \right) - \max_{\beta \in x} \left(k v\left(\beta\right) \right) \right]$$

• Axiom: Add set betweenness: $x \succeq y \Rightarrow x \succeq x \cup y \succeq y$

Int				

Costly self control

- GP Costly self control model
 - Generalizes the Strotz model
 - Relaxes the implication that commitment implies a preference reversal: may desire commitment to avoid cost of resisting temptation even if succumbing to temptation not observed
 - GP argue that it resolves welfare problem: only one preference
 - Does not have the pathologies of multi-period Strotz/ $eta-\delta$

Models & domains	Menus	Beliefs	Conclusion
0000	000000000000000000000000000000000000	000000000000	000
temptations P and Strotz model (DLR	(2009))		

٩

$$\{b\} \succ \{b, c\}, \{b, p\} \succ \{b, c, p\}.$$

broccoli, candy, potato chips

- Two snacks may be worse because unsure what temptation will strike
 - Violates SB: $\{b, c, p\}$ is strictly worse than $\{b, c\}$ and $\{b, p\}$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
Uncertain ter Violations of GP an	nptations d Strotz model (DLR	(2009))		

$\{b, y\} \succ \{y\}$ and $\{b, i, y\} \succ \{b, i\}$.

broccoli, frozen yogurt, ice cream

۲

- Rather have a chance of sticking to her diet rather than committing herself to violating it so {b, y} ≻ {y}. But if the temptation of the ice cream is unavoidable, it's better to also have the frozen yogurt around.
 - Violates a more subtle combination of set betweenness and independence.

	Models & domains	Menus	Beliefs	Conclusion
	0000	0000000●00000000	000000000000	000
Uncertain te DLR (2009, 2010),				

• Model consistent with above behavior:

$$V\left(x\right) = \int_{\mathcal{S}} \left(\max_{\beta \in x} \left[u\left(\beta\right) + v_{s}\left(\beta\right) \right] - \max_{\beta \in x} v_{s}\left(\beta\right) \right) \mathrm{d}\mu\left(s\right)$$

• Axiom: Weak set betweenness: If $\forall \alpha \in x, \beta \in y \ \alpha \succeq \beta$ then $x \succeq x \cup y \succeq y$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
Random Stro	otz			

• Similarly generalize Strotz model to allow for uncertainty

$$V\left(x
ight)=\int\!u\left(rg\max_{eta^{\prime}\in x}v_{s}\left(eta^{\prime}
ight)
ight)d\mu\left(s
ight)$$

 Introduction
 Models & domains coco
 Menus coco
 Beliefs cococococo
 Conclusion coco

 Costly resisting = Randomly succumbing to temptation DLR (2010)
 DLR (2010)

- Given any costly self control preference the choice/preferences over menus coincide with those of a random Strotz model
- Given u and v there exists μ s.t.

$$\max\left[u\left(\beta\right)+v\left(\beta\right)\right]-\max v\left(\beta\right)=\int u\left(\arg\max_{\beta'\in x}v_{s}\left(\beta'\right)\right)d\mu\left(s\right)$$

- Extends immediately to random costly temptation model
- Converse holds for smooth random Strotz models

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
Costly res	sting = randomly	y succumbing		

Implications of equivalence

• Implications

- Same commitment behavior with self-control costs as with uncertain overwhelming temptation.
- Choice from menu matters Must expand domain to pin down.
- New comparatives.
- New dynamic models for overwhelming temptation

Introduction Models & domains Menus Beliefs Conclusio

Temptation with choice of and from menus Noor

• Domain:

۲

$$\succeq_1$$
 over $2^{\Delta(B)}$ and \succeq_2 over $\Delta(B)$

$$\succeq_{1}: V_{GP}(x) = \max_{\beta \in x} (u(\beta) + v(\beta)) - \max_{\beta \in x} v(\beta)$$
$$\succeq_{2}: \qquad u(\beta) + v(\beta)$$

• Sophistication: tie together both periods' decisions:

$$x \cup \{p\} \succ_1 x \Rightarrow p \succ_2 q, \forall q \in x$$

Introduction	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000000	000
Naivete Kopylov and Noor (2	2009), Kopylov (2009)			

• Same domain:

$$\succeq_1$$
 over $2^{\Delta(B)}$ and \succeq_2 over $\Delta(B)$

$$\succeq_{1}: V(x) = (1-p) \left(\max_{\beta \in x} (u(\beta) + v(\beta)) - \max_{\beta \in x} v(\beta) \right)$$
$$+ p \max_{\beta \in x} u(\beta)$$
$$\succeq_{2}: u(\beta) + v(\beta)$$

- 1st period: prob p that will not be tempted and choose according to u, o/w u + v.
- 2^{nd} period: choose according to u + v; 1^{st} period is wrong!

	Models & domains	Menus	Beliefs	Conclusion
	0000	○○○○○○○○○○○○○○	000000000000	000
Naivete	2000) Kopylov (2000)			

Weak Sophistication: tie together both periods' decisions:

$$x \cup \{p\} \succ_1 x \Rightarrow \begin{array}{c} p \succ_2 q, \forall q \in x \text{ or} \\ \{p\} \succ_1 \{q\}, \forall q \in x \end{array}$$

Interpretation: the decision maker is **not** aware of \succeq_2 .

	Models & domains	Menus	Beliefs	Conclusion
	0000	○○○○○○○○○○○○○	000000000000	000
Shame Dillinberger and S	Sadowski (2010). Saito ((2011)		

• Individuals may choose allocations between themselves and others differently depending on whether their choice is public or not

	Models & domains	Menus	Beliefs	Conclusion
	0000	○○○○○○○○○○○○	0000000000000	000
Shame	Sadowski (2010) Saito	(2011)		

- Individuals may choose allocations between themselves and others differently depending on whether their choice is public or not
- Two stages: private choice of menu, then public choice from menu:

 \succeq over subsets of $(\Delta(B))^{I}$, where I is set of individuals, 1 is self

E.g.,
$$\{(2,2)\} \succ \{(2,2), (0,5)\}$$

Introduction	Models & domains	Menus	Beliefs	Conclusion
	0000	○○○○○○○○○○○○○	000000000000	000
Shame				

$$V(\mathbf{x}) = \max_{\boldsymbol{\beta} \in \mathbf{x}} \left(\sum_{i} a_{i} u_{i} (\boldsymbol{\beta}_{i}) - b \left(\max_{\boldsymbol{\gamma} \in \mathbf{x}} \left[a_{1} u_{1} (\boldsymbol{\gamma}_{1}) - u_{1} (\boldsymbol{\beta}_{1}) \right] \right) - b \left(\max_{\boldsymbol{\delta} \in \mathbf{x}} \sum_{j \neq 1} a_{i} \left[u_{j} (\boldsymbol{\delta}_{j}) - u_{j} (\boldsymbol{\beta}_{j}) \right] \right) \right)$$

Utilitarian - regret cost - shame cost

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	●00000000000	000
Anticipation Behavioral model: U	/ 2			

• Model (dis)utility from disappointment/anxiety or anticipation

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000	●00000000000	000
Anticipation Behavioral model: U	, 3			

- $\bullet\,$ Model (dis)utility from disappointment/anxiety or anticipation
- Caplin-Leahy introduce beliefs into the utility function.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000	●00000000000	000
Anticipation Behavioral model: U	/			

- Model (dis)utility from disappointment/anxiety or anticipation
- Caplin-Leahy introduce beliefs into the utility function.
- Two states, G and B; p is probability of G.
 u (p, s) = utility in state s if hold beliefs p.

	000000000000000000000000000000000000000	00000 000000000000000000000000000000000	000
Anticipation / anxiet	~		

- Model (dis)utility from disappointment/anxiety or anticipation
- Caplin-Leahy introduce beliefs into the utility function.
- Two states, G and B; p is probability of G. u(p, s) = utility in state s if hold beliefs p.
 - Enjoy hope/anticipation: u(p, G) = 2p, u(p, B) = p $Eu(p) = p2p + (1-p) p = p + p^2$

	Models & domains 0000	Menus 000000000000000000	Beliefs ●00000000000	Conclusion 000
Anticipation	/ anxiety			
Behavioral model: l	Jtility from beliefs			

- Model (dis)utility from disappointment/anxiety or anticipation
- Caplin-Leahy introduce beliefs into the utility function.
- Two states, G and B; p is probability of G. u(p, s) = utility in state s if hold beliefs p.
 - Enjoy hope/anticipation: u(p, G) = 2p, u(p, B) = p $Eu(p) = p2p + (1-p) p = p + p^2$
 - Dislike disappointment: $\hat{u}(p, G) = 2$, $\hat{u}(p, B) = -p$ $E\hat{u}(p) = 2p - p(1-p) = p + p^2$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	●00000000000	000
Anticipation Behavioral model: U				

- Model (dis)utility from disappointment/anxiety or anticipation
- Caplin-Leahy introduce beliefs into the utility function.
- Two states, G and B; p is probability of G. u(p, s) = utility in state s if hold beliefs p.
 - Enjoy hope/anticipation: u(p, G) = 2p, u(p, B) = p $Eu(p) = p2p + (1-p) p = p + p^2$
 - Dislike disappointment: $\hat{u}(p, G) = 2$, $\hat{u}(p, B) = -p$ $E\hat{u}(p) = 2p - p(1-p) = p + p^2$
- No choice data can identify these.

Models & domains 0000	Menus 000000000000000000000000000000000000	Conclusion 000

- C-L: Identify by observing game with someone who "knows" true preferences and decides what information to give.
 - Specific application, not general behavior
 - Additional untestable / unobservable assumptions, esp. existence of omniscient person – what behavior would she observe that gives her this information?
 - Possible reply: observe not behavior, but feelings...

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	00●00000000	000
Anticipation DT model: Commit	/			

- Model (dis)utility from disappointment/anxiety or anticipation
- Epstein:
 <u>></u> over menu choice and temporal lotteries, specifically 2^{Δ(B)} ∪ Δ (Δ (B)).
 - p risky lottery that resolves in 2 periods
 - \hat{p} same risky lottery that resolves in 1 period
 - q safe lottery
 - As in KP may have: $p \succ q \succ \hat{p}$ (longer anticipation)

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	00000000000	000
Anticipation , DT model: Commit				

- p risky lottery that resolves in 2 periods
- \hat{p} same risky lottery that resolves in 1 period
- q safe lottery
 - Tomorrow p vs. q is just like \hat{p} vs. q today. So tomorrow's self will prefer q over p.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	00000000000	000
Anticipation , DT model: Commit				

- p risky lottery that resolves in 2 periods
- \hat{p} same risky lottery that resolves in 1 period
- q safe lottery
 - Tomorrow p vs. q is just like \hat{p} vs. q today. So tomorrow's self will prefer q over p.
 - Thus $\{p,q\} \sim \{q\}$.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	00000000000	000
Anticipation , DT model: Commit				

- p risky lottery that resolves in 2 periods
- \hat{p} same risky lottery that resolves in 1 period
- q safe lottery
 - Tomorrow *p* vs. *q* is just like \hat{p} vs. *q* today. So tomorrow's self will prefer *q* over *p*.
 - Thus $\{p,q\} \sim \{q\}$.
 - Commitment benefit: $\{p\} \succ \{p,q\} \sim \{q\}.$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000●00000000	000
Anticipation , DT model: Commit				

- p risky lottery that resolves in 2 periods
- \hat{p} same risky lottery that resolves in 1 period
- q safe lottery
 - Tomorrow p vs. q is just like p̂ vs. q today. So tomorrow's self will prefer q over p.
 - Thus $\{p,q\} \sim \{q\}$.
 - Commitment benefit: $\{p\} \succ \{p,q\} \sim \{q\}.$
 - KP do not allow benefit of commitment.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	0000●0000000	000
Anticipation , DT model: Commit				

- Benefits of finding identifying domain:
 - Representation pinned down.
 - Characterization of "more anxious"

	Models & domains	Menus	Beliefs	Conclusion
	0000	00000000000000000	00000●000000	000
Choosing by	eliefs			

• True beliefs q. Take decision a and choose beliefs p s.t.

$$\begin{array}{lll} \mathbf{a}^{*}\left(p\right) & = & \arg\max_{a}\sum_{i}u\left(a,s_{i}\right)p_{i}\\ p^{*} & = & \arg\max_{p}\alpha\sum_{i}u\left(a^{*}\left(p\right),s_{i}\right)p_{i}\\ & +\left(1-\alpha\right)\sum_{i}u\left(a^{*}\left(p\right),s_{i}\right)q_{i} \end{array}$$

where α is degree of enjoyment of optimistic beliefs (anticipation effect).

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000	000000●00000	000
Choosing be Behavioral model:	liefs Brunnermeier-Parker			

 BP application: For high enough α choice between safe act c and risky act r is always r since will choose to believe in good state and get high anticipatory payoff

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000	000000●00000	000
Choosing be Behavioral model:	liefs Brunnermeier-Parker			

 BP application: For high enough α choice between safe act c and risky act r is always r since will choose to believe in good state and get high anticipatory payoff

• Assume
$$q\left(s_{i}
ight)=1/2$$
, $lpha=1/2$

$$\begin{array}{ccc} s_1 & s_2 \\ c & 0 & 0 \\ r & -2 & 1 \end{array}$$

Choose r and $p(s_1) = 1$ since (1/2) + (1/2)(-1/2) > 0.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	0000000●0000	000
Choosing Behavioral mod	oeliefs el: Brunnermeier-Parker			

• DT approach: Spiegler

	Models & domains	Menus	Beliefs	Conclusion
	0000	00000000000000000	0000000●0000	000
Choosing Bobayioral mod	beliefs			

- DT approach: Spiegler
 - Risky choice would also be made by risk lover.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	0000000●0000	000
Choosing I	oeliefs			

- DT approach: Spiegler
 - Risky choice would also be made by risk lover.
 - How to distinguish? Enrich domain of choice beyond pairs.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	0000000●0000	000
Choosing I	oeliefs			

- DT approach: Spiegler
 - Risky choice would also be made by risk lover.
 - How to distinguish? Enrich domain of choice beyond pairs.
 - If violate IIA not consistent with standard model. (Are we comfortable with violation of IIA?)

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	0000000●0000	000
Choosing b	eliefs			

- DT approach: Spiegler
 - Risky choice would also be made by risk lover.
 - How to distinguish? Enrich domain of choice beyond pairs.
 - If violate IIA not consistent with standard model. (Are we comfortable with violation of IIA?)
 - If consistent then is there anything new here? Yes-to the extent that interpretation matters.

Chaosing	h aliafa	
Introduction	Models & domains 0000	Menus 0000000000

0000000000000

Beliefs

Choosing beliefs Behavioral model: Brunnermeier-Parker

- DT approach: Spiegler
 - Risky choice would also be made by risk lover.
 - How to distinguish? Enrich domain of choice beyond pairs.
 - If violate IIA not consistent with standard model. (Are we comfortable with violation of IIA?)
 - If consistent then is there anything new here? Yes-to the extent that interpretation matters.
 - But in any case seems important to know if all that is new is interpretation or behavior as well.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	0000000000000	000
Choosing Behavioral mod	b eliefs el: Brunnermeier-Parker			

• DT approach: Spiegler

- Choose r over r' iff $p\left(s_{1}\right)$ large enough ($\geq 1/2$) whereupon c is chosen over r
- Violates IIA

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	000000000●00	000
Choosing b	peliefs			

- Another DT approach:
 - Expand domain to induced preferences over $q\in\Delta\left(S
 ight)$

$$V_{BP}(q) = \max_{p,a} \alpha \sum_{i} u(a^{*}(p), s_{i}) p_{i} \qquad (1) \\ + (1-\alpha) \sum_{i} u(a^{*}(p), s_{i}) q_{i} \\ V_{KP}(q) = \sum_{i} v(a^{*}(q), s_{i}) q_{i} \qquad (2)$$

Are the preferences over Δ(S) generated by (2) when we vary v different from those generated by (1)when we vary u and α?

	Models & domains	Menus	Beliefs	Conclusion
	0000	0000000000000000000	oooooooooooooo	000
Choosing be Cold feet	eliefs			

• Epstein and Kopylov: \succeq over menus of acts $\xi \in 2^{\left[\Delta(B)^{S}\right]}$

	Models & domains	Menus	Beliefs	Conclusion
	0000	00000000000000000	0000000000000	000
Choosing be Cold feet	liefs			

- Epstein and Kopylov: \succeq over menus of acts $\xi \in 2^{\left[\Delta(B)^{S}\right]}$
- Yields subjective "beliefs" over states, and decision maker suffers the temptation to use wrong beliefs later. They will get "cold feet". Knowing this decision maker commits ahead of time.

$$V(\xi) = \max_{f \in \xi} \left(p \cdot u(f) + k \min_{q \in Q} (q \cdot u(f)) \right)$$
$$- \max_{f \in \xi} k \left(\min_{q \in Q} (q \cdot u(f)) \right)$$
, $p \in Q$

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000	000000000000000	000
Choosing b	eliefs			

- Epstein and Kopylov: \succeq over menus of acts $\xi \in 2^{\left[\Delta(B)^{S}\right]}$
- Yields subjective "beliefs" over states, and decision maker suffers the temptation to use wrong beliefs later. They will get "cold feet". Knowing this decision maker commits ahead of time.

$$V(\xi) = \max_{f \in \xi} \left(p \cdot u(f) + k \min_{q \in Q} (q \cdot u(f)) \right)$$
$$- \max_{f \in \xi} k \left(\min_{q \in Q} (q \cdot u(f)) \right)$$
$$, p \in Q$$

 At what point does domain become so complicated as to be unhelpful?

	Models & domains 0000	Menus 000000000000000000000000000000000000	Conclusion 000
"New"	domains - new models		

• Stochastic choice: probabilities of mistakes.

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	○○○○○○○○○○●	000
"New"	domains - new models			

- Stochastic choice: probabilities of mistakes.
 - McFadden and Richter (1990), Gul and Pesendorfer (2003), Maccheroni, Marinacci, Rustichini (2007)

	Models & domains	Menus	Beliefs	Conclusion
	0000	000000000000000000000000000000000000	○○○○○○○○○○●	000
"New" do	mains - new mod	ماد		

- Stochastic choice: probabilities of mistakes.
 - McFadden and Richter (1990), Gul and Pesendorfer (2003), Maccheroni, Marinacci, Rustichini (2007)
- Delay

"Now"	domaine	now models		
	Models 0000		Menus 000000000000000000000000000000000000	Conclusion 000

- Stochastic choice: probabilities of mistakes.
 - McFadden and Richter (1990), Gul and Pesendorfer (2003), Maccheroni, Marinacci, Rustichini (2007)
- Delay
 - Rustichini (2008)

"Now"	domoine	now modele			
	Models 0000		Menus 000000000000000000000000000000000000	Beliefs ○○○○○○○○○○●	Conclusion 000

ueis

• Stochastic choice: probabilities of mistakes.

- McFadden and Richter (1990), Gul and Pesendorfer (2003), Maccheroni, Marinacci, Rustichini (2007)
- Delay
 - Rustichini (2008)

Idillo

• Ordered sequences / Lists

4NL - 22	1. 1	now modele		
	Models 0000		Menus 000000000000000000000000000000000000	Conclusion 000

ueis

• Stochastic choice: probabilities of mistakes.

- McFadden and Richter (1990), Gul and Pesendorfer (2003), Maccheroni, Marinacci, Rustichini (2007)
- Delay
 - Rustichini (2008)

Idillo

- Ordered sequences / Lists
 - Rubinstein and Salant (2006)

"Now"	domoine		
	Models 0000	Menus 000000000000000000000000000000000000	Conclusion 000

'New" domains - new models

- Stochastic choice: probabilities of mistakes.
 - McFadden and Richter (1990), Gul and Pesendorfer (2003), Maccheroni, Marinacci, Rustichini (2007)
- Delay
 - Rustichini (2008)
- Ordered sequences / Lists
 - Rubinstein and Salant (2006)
- Choice over time

"Now"	domoine				
Introduction	Models 0000	& domains	Menus 000000000000000000000000000000000000		Conclusion 000
				D I' C	

'New" domains - new models

- Stochastic choice: probabilities of mistakes.
 - McFadden and Richter (1990), Gul and Pesendorfer (2003), Maccheroni, Marinacci, Rustichini (2007)
- Delay
 - Rustichini (2008)
- Ordered sequences / Lists
 - Rubinstein and Salant (2006)
- Choice over time
 - Caplin and Dean (2010)

	Models & domains	Menus Beliefs	Conclusion
	0000	000000000000000000000000000000000000	●00
C 1 1			

Conclusion and the future

- DT studies novel phenomenon by finding identifying behavioral properties on rich enough choice domains
- Focus is often on axioms-today emphasis on domains
 - One major direction: Choice of menus
 - Saw need of choice from menus as well
- Models for:
 - unforeseen contingencies
 - temptation
 - anxiety
 - shame
 - choice of beliefs
 - ...contemplation costs, regret, richer dynamics

Intr			

Conclusion and the future

- Other domains: Lists, time, delay,...
 - Will these be useful lead to interesting models and comparatives for models on which we focus?
 - Perhaps: these may be useful ways to study in/attention, other implications of risk/ambiguity,...

Conclusion and the future

- Moving further away from "choice": eye movement or mouse lab to determine search behavior and correlate with cognitive models, biological features, brain scans
 - Challenge here is whether domain will be of use: we typically don't want to predict eye movement but we do want to predict how people invest in information collection.
 - Policy makers (correctly) know that how we present information matters: small or large verbal or visual warnings on cigarette boxes and how returns of mutual funds should be presented so models along these lines have potential.